Chem. Ber. 113, 2189-2199 (1980)

Reaktivität von Metall-Metall-Bindungen

Dreikernkomplexe durch Spaltung von Fe – Co-, Mn – Co-, Fe – Fe- und Fe – Mn-Bindungen

Hans-Joachim Langenbach und Heinrich Vahrenkamp*

Chemisches Laboratorium der Universität Freiburg, Albertstr. 21, D-7800 Freiburg

Eingegangen am 16. Oktober 1979

Aus einfach arsen- bzw. phosphorverbrückten Zweikernkomplexen (1-6) mit Fe-Co-, Mn-Co-, Fe-Fe- und Fe-Mn-Bindungen entstehen durch nucleophile Öffnung der Metall-Metall-Bindungen mit Organometall-dimethylarseniden M-AsMe₂ (M = Organo-Fe-, Cr-, Mobzw. W-Einheiten) in gezielter Synthese neue Dreikernkomplexe. Diese enthalten drei verschieden koordinierte Metallatome und zwei verbrückende AsMe₂- bzw. PMe₂-Gruppen in kettenförmiger Anordnung.

Reactivity of Metal-Metal Bonds

Trinuclear Complexes by Cleavage of Fe-Co, Mn-Co, Fe-Fe, and Fe-Mn Bonds

From singly arsenic- or phosphorus-bridged dinuclear complexes (1-6) with Fe-Co, Mn-Co, Fe-Fe, and Fe-Mn bonds by nucleophilic opening of the metal-metal bonds with organometal dimethylarsenides M-AsMe₂ (M = organo-Fe, Cr, Mo or W units) new trinuclear complexes are formed in a designed synthesis. These contain three differently coordinated metal atoms and two bridging AsMe₂ or PMe₂ groups in a chain-like arrangement.

Von den verschiedenen Möglichkeiten zur Lösung von Metall-Metall-Bindungen¹⁾ (radikalisch, reduktiv, durch Heterolyse und durch nucleophile Substitution) wird die nucleophile Spaltung zwar sehr häufig präparativ genutzt. Außer zur Gewinnung einfacher Metallcarbonyl-Derivate²⁾ (z. B. durch nucleophilen Abbau von Fe₂(CO)₉ oder Ru₃(CO)₁₂) ist sie aber bisher nicht systematisch untersucht worden. Wir haben die prinzipielle Anwendbarkeit dieser Reaktion für einfach verbrückte Organometall-Zweikernkomplexe beobachtet^{3,4)} und die zyklische Wiederholbarkeit der Sequenzen von nucleophilen Öffnungen und Schließungen an zwei Beispielen erprobt^{5,6}). Nach diesen allgemeinen Untersuchungen bot es sich an, das Reaktionsprinzip auch zur Synthese neuartiger Mehrkernkomplexe zu nutzen, indem als Nucleophile funktionelle Liganden eingesetzt wurden⁷⁾. Als funktionelle Liganden lassen sich auch die seit kurzer Zeit bekannten Organometall-dimethylarsenide⁸⁻¹¹⁾ bezeichnen, die bei ihrer Verwendung als Liganden ein weiteres Metallatom in einen Komplex einbringen. Durch nucleophile Spaltung von ligandenverbrückten Metall-Metall-Bindungen mit Hilfe der Organometall-dimethylarsenide werden so Dreikernkomplexe zugänglich, über die in dieser Arbeit berichtet wird.

2190

Darstellungen

Es wurden Umsetzungen gemäß Gl. (1) angestrebt. Als Zweikern-Ausgangskomplexe **A** wurden zunächst die Verbindungen 1-6 eingesetzt, von denen die einfache Öffnung der Metall-Bindungen ohne Neben- bzw. Folgereaktion erwartet wurde. Als metallorganische Lewis-Basen **B** dienten hier die erstmals von Malisch^{8,9)} beschriebenen Komplexe 7a - h. Über die Umsetzungen mit anderen Zweikernkomplexen¹²⁾ und anderen Organometall-dimethylarseniden^{10,11,13)} wird gesondert berichtet. Die Dreikernkomplexe des schon bekannten Typs C^{11} werden hiermit um 44 neue Vertreter vermehrt.

M, M', M" = Organometall-Einheiten

Der einfachste für nucleophile Spaltungen geeignete Zweikernkomplex ist 1, denn seine Fe – Co-Bindung wird durch Donorliganden in eindeutiger Weise zu stereochemisch einheitlichen Produkten geöffnet⁵⁾. Dies galt auch für die Umsetzungen mit den "Liganden" 7. Sie lieferten leicht und in guten Ausbeuten die Dreikernkomplexe **8a** – h. Daß diese Reaktionen auch unter deutlich veränderten stereochemischen und elektronischen Bedingungen ablaufen, zeigte der Einsatz von 2 und 3 als Zweikernkomplexe. 2 (kürzere Metall-Metall-Bindung durch PMe₂-Brücke¹⁴⁾) reagierte wie erwartet zu **9a** und **b**. 3 (stärkere Metall-Metall-Bindung durch Erhöhung der Donorkraft des Eisens⁵⁾) lieferte analog **10a** und **b**. Die erhöhte Basizität des Eisenatoms aus 3 zeigte sich aber darin, daß **10a** im Gegensatz zu allen anderen hier beschriebenen Dreikernkomplexen sich in Lösung unter Rückreaktion mit den Ausgangskomplexen 3 und 7c ins Gleichgewicht setzte. Dies bedeutet, daß die Nucleophile Fe(CO)₃PMe₃ (aus 3) und AsMe₂ (aus 7c) um das Elektrophil Co(CO)₃ (aus 3) konkurrieren. Der durch PMe₃-Substitution stärker basische "Ligand" 7g im Dreikernkomplex **10b** erlaubt diese Konkurrenzreaktion nicht.

Im Vergleich zu 1 und seinen Derivaten 2 und 3 ist in 4 und 5 jeweils eines der Metallatome durch ein anderes ersetzt. Dieser isoelektronische Ersatz hat praktisch keine Veränderung der Reaktivität zur Folge, denn 4 und 5 reagierten mit allen acht Organometall-dimethylarseniden in der erwarteten Weise zu 11a - h und 12a - h, die sich auch in bezug auf Stabilität und Löslichkeit nicht wesentlich von den Komplexen 9,10 unterscheiden.

Von 6 hingegen ist bekannt, daß Mechanismus¹⁵⁾ und Stereochemie¹⁶⁾ der Metall-Metall-Bindungsspaltung anders sind als in den bisher eingesetzten Zweikernkomplexen. Hier kann der neu eintretende Ligand am Mangan die *cis*- bzw. *trans*-Stellung zur verbrückenden $AsMe_2$ -Gruppe einnehmen. Entsprechendes wurde auch bei den Umsetzungen von 6 mit 7 beobachtet: Bei vorsichtiger Reaktionsführung resultierten die am Mangan *cis*-konfigurierten Dreikernkomplexe 13a - h. Bei thermischer Belastung wandelten diese sich in die wesentlich leichter löslichen *trans*-Verbindungen 14a - h um. Die Thermolabilität der Komplexe 13 ist recht verschieden. Am stabilsten sind 13b - d, die zur Umlagerung mehrere Stunden in Lösung erhitzt werden mußten, während das empfindlichste 13e sich auch im kristallinen Zustand bei Raumtemperatur langsam in 14e umwandelte.

Spektren und Strukturzuordnung

Das umfangreiche vorliegende Untersuchungsmaterial über die Spaltung der Metall-Metall-Bindungen in 1-6 mit einfachen Nucleophilen³⁻⁶⁾ ließ den Strukturtyp C für die neugebildeten Dreikernkomplexe erwarten. Die Leichtigkeit der Umsetzungen und die Einheitlichkeit der Produkte unterstützte diese Annahme. Für **8**c wurde die Brutto-

Tab. 1. NMR-Spektren	der Dreikernkomple:	xe (Benzol, int.	TMS, J in Hz,	b = breites Signal)

	Cp		ER2		AsH	82	РМез		
Komplex.	δ	ل	δ	J	ũ	J	δ	J	
80	4,08		1,87		1,32				
þ	4,11		1,87		1,39				
Ĕ	4,61		1,85		1,43				
₫	4,72		1,86		1,58				
e s	3,91	1,9	1,90		1,38	0,4	0,83	9,6	
			1,89		1,31	0,4			
f	4,18	2,3	1,93		1,63		0,76	9,3	
ā	4,64	1,7	1,93		1,69		0,77	9,2	
Þ	4,73	1,2	1,90		1,825		1,01	9,56	
9a	4,07		1,97	8,8	1,29	0,9			
Þ	4,62		1,94	8,7	1,48	0,9		2)	
10a	4,64		2,12	0,5	1,48		1,25	9,8"	
Þ	4,72	1,6	2,20	0,6	1,74		1,30	9,647	
b)							0,77	9,5	
11a)	4,09		1,93		1,36				
р-, т)	4,12		1,93		1,43				
с_, _b)	4,61		1,93		1,47				
_d b)	4,67		1,93		1,56				
e_,	4,03	1,8	1,97		1,42	0,5	0,85	9,5	
,ь)					1,36	0,5			
- ь)	4,29	2.3	2,01		1,6/	0,3	0,76	9,3	
а b)	4,64	1,7	1,99		1,72		0,76	9,5	
<u>D</u>	4,70	1,8	2,01		1,86		0,89	9,7	
16 <u>1</u>	4,05		1,92		1,36				
8	4,10		1,92		1,4/				
≦ 	4,61		1,92		1,40				
¥	4,62		1,90		1,50		0.07		
8	4,02	1,8	1,97		1,455		0,86	9.3	
f	4 20	2.2	1,90		1,370		0.81	0 i	
1	4,20	2,3	1,97		1,0/		0,04	7,4 0.7	
9 11	4,70	1.8	1,35		1,99		0,50	3,7 0.7	
13 a	2.05	1,0	1,70		1 27		0,50	2.7	
-98	2,95		1,71		1,57				
2	5,05 1, 38		1 71		1 62				
2	4 42		1.70		1 59				
	4.03	1.7	1.81		1.35		0.76	9.4	
e e	.,	.,,	1.83		1.43		-,/-	211	
f	4.11	2.5	1.83		1.67		0.67	9.4	
e a	4.63	3.7	1.84		1.73		0.73	9.6	
2	4,59	1.5	1.87		1.85		0.86	9.6	
	3,88		1.80		1,22		-,	211	
#3# b	3.87		1.80		1.29				
i c	4,40		1,82		1,33				
i d	4,37		1,80		1,37				
i e	3,98	1,8	1,87		1,25		0,77	9,3	
÷		·			1,34		,		
f	4,06	2.3	1,89		1,515		0,76	9.4	
e Q	4,52	1,5	1,91		1.58		0,80	9.5	
≓ h	4,57	1,6	1,91		1,66		0.90	9.7	
æ.									

^{a)} Fe-gebundener PMe₃-Ligand. – ^{b)} Mn – Cp-Signale der Komplexe 11: $a \delta = 4.44$, b 4.43, c 4.42, d 4.44, e 4.52, f 4.52, g 4.52, h 4.55.

zusammensetzung durch ein FD-Massenspektrum bestätigt. Auf den kristallographischen Nachweis der kettenförmigen Molekülstrukturen wurde verzichtet, da uns dieser inzwischen für einen analog erhaltenen kettenförmigen Vierkernkomplex gelungen ist¹⁷).

Die NMR-Daten der Dreikernkomplexe (Tab. 1) sind mit den für 8-14 angegebenen Konstitutionen in Übereinstimmung. In allen Fällen treten die ER₂-Signale (entsprechend der Formulierung C) in der für Komplexe ohne Metall-Metall-Bindung typischen Tieffeldlage auf. Die Signale der von den Organometall-dimethylarseniden herrührenden AsMe₂-Gruppen liegen bei höherem Feld, wie es ebenfalls für die Einheiten M typisch ist. Beide Signale werden, wie erwartet, durch PMe₃-Substitution an den betreffenden Metallatomen zu tiefem Feld verschoben^{5,6)}. Die durch vier verschiedene Ligan-

Tab. 2. IR-Spektren der Dreikernkomplexe (cm⁻¹, 10a, 11e-h, 13 und 14 in Benzol, sonst in Cyclohexan, Bezeichnung der Baugruppen wie in C)

Komplex	∨(M'~CO)				∨(M''-C0)				v(M-CO)		
8a	2014s	1958sst	1929st	1917m	2039s	1965st	1958sst			2024sst	1988st	
È.	2011st	1962sst	1932st	1923m	2042s	1978st	1965sst			2025st	1962sst	1943m
£	2016s	1960sst	1932st	1919m	2042 s	1978st	1967sst			2027sst	1960sst	1945m
g	2017m	1959sst	1933st	1918m	2041s	1975st	19675ch			2023sst	1959sst	1935\$ch
Ē	2012ss	1954sst	1927m	1920\$ch	2032s	1961\$ch	1954sst			1946st		
f	2014s	1955sst	1927st	1920Sch	2031s	1972st	1961Sch			1936m	1866st	
g.	20145	1953sst	1926m	1919Sch	2032s	(970st	1959Sch			1945m	1872st	
Þ	2014s	1953sst	1926st	1916Sch	2032ss	1969st	1960Sch			1938m	1861st	
<u>9a</u>	2017m	1961sst	1929st	1916m	20415	1968st	1955Sch			2026sst	1989sst	
Þ	2018s	1962sst	1932m	1916s	2046ss	1978m	1966Sch			2027st	1962sst	19365ch
<u>10a</u>	1937Sch	1862sstb			2 0 3 0m	1966Sch	1950sst			2012m	1950sst	1937Sch
₽	1946m	1869sst	18615ch		2016ss	1962m	1950m			1946m	1869sst	
<u>11a</u>	1928st	1872m			2008s	1956st	1942mb			2025m	1985sst	
Þ	1931st	1876m			2004m	1959sst	1946Sch			2022s	1967Sch	1953Sch
£	1929m	1874m			2011s	1960sst	1947Sch			2 0 3 Om	1972m	1955Sch
₫	1929st	1873m			2008s	1954sst	1941st			2025m	1962 s t	1949sst
<u>e</u>	1915m	1854m			2001ss	1943sst	1935sst			1935sst		
£	1915m	1857sst			2006ss	1948stb	1935stb			1928Sch	1857sst	
g	1914m	1858sstb			2008ss	1948stb	1940st			1933Sch	1858sstb	
b	1917a	1853sst			2011ss	1951 s t	1936st			1930Sch	1853sst	
<u>12a</u>	2036s	1960s	1932m	1924Sch	1998s	1948s t	1739s	t731Sch		2026sst	1988m	
Þ	2032m	1962m	1932st	1925Sch	1998s	1953sst	17425	1735Sch		2016sst	1969m	1946sst
Ę	2037s	1961Sch	1932st	1924Sch	1997s	1950sst	1743s	1736Sch		2027sst	1975m	1956sst
g	2034s	1962m	1934st	19235ch	1998s	1952sst	17435	1733Sch		2024sst	1962m	1939st
£	2029s	1954s	1925mb	1921Sch	1988sb	1936st	1718ssb			1944sst		
£	2033s	1957m	1928sst	1925Sch	199955	1945sst	1724ssb			1936 s t	1868m	
g	2029m	1954Sch	1927st	1924Sch	1991s	1942st	1732ssb			1950st	1874sst	
b	2029ss	1951Sch	1928st	1922Sch	1995sb	1945sst	1718ssb			1938st	1863st	
<u>13a</u>	2018Sch	1945mb	1912stb		2054s	1996Sch	1989Sch	1980stb	1960mb	2022sst	1980stb	
Þ	2021sst	1946m	1913st	1907Sch	2056s	1996mb	1980st	1960mb		2009st	1954sb	1931m
£	2026sst	1948m	1915stb		2058ss	1998Sch	1989Sch	1979m	1965mb	2026sst	1960s	1934s
đ	2033sst	1947st	1915Sch	1907Sch	2056s	1997Sch	1988Sch	1978m	1964mb	2023sst	1947st	1923stb
ē	2021m	1943sstb	1913stb		2047ss	1982sb	1968sb	1951Sch		1943sstb		
£	2008s	1948sst	1898sst		2050m	1992st	1974st	1960\$ch		1910sst	1843sst	
2	2017st	1942st	1912Sch	1910sst	2049s	1983mb	1971mb	1955mb		19395ch	1860st	
<u>5</u>	2018m	1942stb	1910sst	1905Sch	2049s	1989m	1965stb	1942 stb		1932Sch	1848st	
14a	2022sst	1947st	1913st	19085ch	2053 s	2003Sch	1960Sch	1955\$ch		2022sst	1980st	
Þ	2024m	1952sstb	1915st	1910Sch	2057ss	2012st	1971sstb			2012st	1952sstb	1934s
<u>2</u>	2025sst	1952stb	1915m	1910\$ch	2059ss	20125ch	1970stb			2027sst	1960stb	1935Sch
₫	2023sst	1948st	1914m	1907Sch	2056ss	2011Sch	1967stb			2020Sch	1948st	1923Sch
ġ	2018m	1944sst	1911st	1907Sch	2046ss	1996s	1949sst			1944sst		
f	2019st	1946sst	1911st	1907Sch	2050ss	2000s	1962Sch	1953sst		1928m	1858st	
g	2 0 2 0m	1946sst	1912stb		2053ss	2001ss	1961Sch	1953sst		1946sst	1863st	
h	2 0 2 0m	1946sst	1911sst	1907Sch	2052ss	200055	1962Sch	1952sst		1932Sch	1850st	

den am äußeren Eisenatom chiralen Komplexe **8e**, **11e**, **12e**, **13e** und **14e** enthalten diastereotope As – CH₃-Gruppen, die sich in fast allen Fällen durch jeweils zwei getrennte Signale für beide AsMe₂-Brücken zu erkennen geben. Die übliche *trans*-Anordnung der As- bzw. P-Atome an den Baueinheiten Fe(CO)₃, Co(CO)₃ und Fe(CO)₂NO wird durch die Dublettaufspaltung des AsMe₂-Signals bei **9a**, **b** bzw. **10a**, **b** belegt, in denen ein As- und ein P-Ligand einander gegenüberstehen. Bei den *cis*-Komplexen **13** liegt die AsMe₂(Fe/Mn)-Resonanz stets etwas höher und die AsMe₂(Mn/M)-Resonanz stets etwas tiefer als in den korrespondierenden *trans*-Komplexen **14**, vgl. Lit.⁶⁾. Neben diesen mit Hilfe einfacher Vergleichsverbindungen interpretierbaren Trends sind die Ähnlichkeit aller NMR-Spektren und die typischen Signallagen und Kopplungsmuster aller beteiligten Baugruppen die wesentlichen Argumente zur Annahme der Konstitution **C** für alle hier beschriebenen Komplexe.

Die IR-Spektren im CO-Valenzschwingungsbereich (Tab. 2) ließen sich nach Festlegung auf den Strukturtyp C damit in Übereinstimmung bringen. Aus den zahlreichen Banden sind die für die Organometall-Einheiten M relativ leicht auszusortieren. Bei den anderen unterstützt der Vergleich mit denen einfacherer Komplexe³⁻⁶⁾ die Zuordnungen. Der Unterschied der *cis*- und *trans*-Komplexe **13** und **14** wird deutlich, ebenso wie die axiale *trans*-Anordnung der beiden Arsenatome an der Fe(CO)₂NO-Einheit¹⁸⁾. Infolge mangelnder Löslichkeit in Cyclohexan mußten einige Substanzen in Benzol vermessen werden, in dem die Auflösung und damit die Interpretierbarkeit der Spektren geringer ist.

Diskussion

Mit den Verbindungen 8 – 14 liegt eine Serie von Dreikernkomplexen vor, deren Umfang und gute Zugänglichkeit es verbieten, diese Komplexe noch als ungewöhnlich zu bezeichnen. Sie demonstrieren erneut, daß es mit Hilfe der verbrückenden Hauptgruppenelemente möglich wird, Aufbau- und Strukturprinzipien, die denen der organischen Chemie vergleichbar sind (Ketten, Ringe, Käfige), in die Übergangsmetallchemie zu übertragen. Und zum Unterschied von der klassischen Komplexchemie, die ebenfalls durch Aggregation kettenförmig verknüpfte Mehrkernkomplexe kennt, sind hier durch gezielte Einzelschritte die Kettenglieder nach Wahl aneinanderzufügen.

Die einfachsten hier beschriebenen Dreikernkomplexe haben fünf Kettenglieder, d. h. drei Metall- und zwei Brückenatome. Durch PR_3 -Substitution werden die Ketten auf sechs und im Falle von **10b** auch auf sieben Glieder verlängert. Während die Variation bei den Brückengliedern nicht weit getrieben wurde, scheint sie bei den Metallatomen der ersten Übergangsreihe und ihren Liganden fast beliebig zu sein. Die meisten Komplexe **8**-14 enthalten drei verschiedene Metallatome. Kommen gleiche Metallatome vor (z. B. enthalten **12a** und **e** drei Eisenatome), so sind sie immer verschieden koordiniert.

Die Stereochemie der Dreikernkomplexe ist zumeist einfach. An den trigonalbipyramidal koordinierten Zentren $Fe(CO)_3L_2$, $Co(CO)_3L_2$ und $Fe(CO)_2(NO)L_2$ (L bedeutet hier die Brückenatome) herrscht jeweils *trans*-Disubstitution. Diese wird auch an den oktaedrischen Mn(CO)₄L₂-Zentren bevorzugt, wie die *cis-trans*-Umlagerungen beweisen. Da auch in der Basis der drei tetragonal-pyramidal koordinierten Organometall-Einheiten M die AsMe₂- und PMe₃-Liganden bevorzugt *trans* zueinander stehen^{19,20)}, herrscht entlang der Ketten zumeist gestreckte Koordination und Abwinkelung jeweils an den Brückenatomen. Dies sollte sich in einer gestreckten Molekülform äußern, die für einen entsprechenden Vierkernkomplex auch beobachtet wurde¹⁷⁾. Es sollte aber auch für eine Elektronendelokalisation entlang der Ketten und damit für anisotrope physikalische Eigenschaften entsprechender oligomerer Komplexe von Bedeutung sein.

Bindungen zwischen leichten Übergangsmetallatomen sind besonders schwach. Daher dürfte die leichte Spaltbarkeit der Metall-Metall-Bindungen in 1-6 einer der Gründe für die leichte und eindeutige Bildung der Dreikernkomplexe sein. Inzwischen sind zahlreiche einfach verbrückte Zweikernkomplexe mit Metallen aus der ersten Übergangsreihe bekannt, und dementsprechend viele Dreikernkomplexe sollten sich herstellen lassen. Bei den nicht so leicht spaltbaren Zweikernkomplexen mit schweren Übergangsmetallen wurden mit einfachen Nucleophilen alternativ oder zusätzlich auch Substitutionsreaktionen festgestellt³). Wir haben inzwischen beobachtet, daß auch mit den metallorganischen Lewis-Basen wie 7 das Reaktionsgeschehen dort komplizierter als bei den hier beschriebenen Verbindungen ist¹²).

Diese Arbeit wurde vom Fonds der Chemischen Industrie unterstützt. Herrn Dr. K. Steinbach, Marburg, danken wir für die Massenspektren.

Experimenteller Teil

Alle Umsetzungen wurden unter Luftausschluß in gereinigten Lösungsmitteln durchgeführt. Die Ausgangskomplexe wurden nach Literaturvorschriften hergestellt. – NMR: Varian T-60. – IR: Perkin-Elmer 177.

Alle Dreikernkomplexe wurden durch Umsetzung eines der Zweikernkomplexe mit einem der Organometall-dimethylarsenide gewonnen. Tab. 3 faßt die quantitativen Daten dazu zusammen. Die darin unter Var. angegebenen Aufarbeitungsvarianten waren wie folgt:

- A: Die Reaktionslösung wurde i. Vak. auf 10% ihres Volumens eingeengt und nach Zugabe von 5-9 Teilen Hexan der Kristallisation überlassen. Nach Filtrieren wurde der Niederschlag mit wenig kaltem Hexan gewaschen und getrocknet. Im Bedarfsfall wurde erneut aus Benzol/Hexan umkristallisiert.
- B: Das Produkt fiel im Reaktionsverlauf teilweise aus. Nach Einengen i. Vak. auf ein Viertel des Volumens wurde filtriert und mehrmals mit wenig kaltem Hexan gewaschen. Bei Bedarf wurde aus Benzol/Hexan umkristallisiert.
- C: Nach Entfernen des Lösungsmittels i. Vak. wurde der Rückstand mit möglichst wenig Benzol extrahiert, der Extrakt mit dem drei- bis fünffachen Volumen Hexan versetzt und der Kristallisation überlassen. Das abfiltrierte Produkt wurde mit wenig Hexan gewaschen.

Tab. 4-8 geben die Charakterisierung der Dreikernkomplexe wieder. Die komplizierten Namen der Verbindungen werden dabei so angegeben, daß im Kopf der Tabelle jeweils der unveränderliche Namensteil steht und der dort durch eckige Klammern freigehaltene Platz mit dem in der Tabelle genannten veränderlichen Namensteil gefüllt werden muß.

Produkt	Ausga Nr.	angsverb g	indung mmol	Reag Nr.	a) anmol	Lösungsmit	te) ^{b)} ml	Reaktions- Temp.(°C)	Zeit(h)	Var.	Ausbeute g %	
8 <u>a</u>	1	0.13	0.31	Za	0.32	Benzol	5	25	0.2	A ,	0.17 78	
Ē	1	0.12	0.29	Þ	0.25	Benzol	5	25	0.5	A	0.16 86	
ç	ļ	0.17	0.41	Ē	0.50	Benzol	5	25	0.5	A	0.21 70	
₫	7	0.13	0.31	₫	0.30	Benzol	5	25	0.3	A	0.22 87	
Ē	1	0.10	0.24	ŝ	0.25	Benzo]	5	25	0.2	А	0.16 86	
<u>f</u>	1	0.12	0.29	ţ	0.30	Benzol	5	25	0.2	A	0.18 79	
ş	1	0.10	0.24	9	0.30	Benzol	4	25	0.5	A	0.16 83	
þ	1	0.09	0.20	þ	0.20	Benzol	3	25	0.3	А	0.15 81	
9a	2	0.12	0.38	Za	0.40	Hexan	12	25	2.0	в	0.20 80	
þ	<u>≧</u>	0.12	0.38	Z₫	0.40	Hexan	12	25	2.0	в	0.19 65	
10a	3	0.22	0.47	Zs	0.50	B/H 1:1	3	25	2.0	A	0.23 60	
ţ	3	0.09	0.20	Za	0.22	B/H 1:1	2	25	2.0	в	0.13 73	
<u>11a</u>	4	0.11	0.26	Za	0.3	Hexan	7	25	1.0	в	0.13 71	
₽	<u>4</u>	0.14	0.33	Þ	0.4	Hexan	10	25	1.0	В	0.20 83	
Ē	4	0.08	0.19	Ē	0.2	Hexan	5	25	0.7	В	0.11 75	
₫	4	0,10	0.24	₫	0.3	Hexan	7	25	0.3	в	0.18 87	
£	4	0.12	0.28	ŝ	0.3	Hexan	5	25	0.7	в	0.20 93	
f	4	0.16	0.38	f	0.4	Hexan	8	25	0.6	в	0.23 78	
5	4	0.11	0.26	ā	0.3	B/H 1:5	4	25	0.5	8	6.18 85	
ħ	4	0.25	0.59	₽	0.6	Hexan	10	25	0.4	6	0.52 96	
12a	5	0.10	0.24	Za	0.3	Hexan	10	25	0.5	В	0.15 87	
₽	5	0.11	0.27	₽	0.3	Hexan	12	15	0.7	В	0.16 84	
ŝ	≦	0.10	0.24	ç	0.4	Hexan	10	25	1.0	В	0.14 7€	
₫	5	0.09	0.20	đ	0.2	Hexan	9	25	1.5	в	0.14 80	
Ē	2	0.4Z	1,01	₫	1.5	8/H 1:5	25	15	2.0	В	0.63 84	
Ē	5	0.25	0.60	f	0.7	B/H 1:5	12	25	0.8	в	0.30 79	1
2	5	0.24	0.58	ā	0.6	B/H 1:5	7	25	3.0	В	0.40 85	;
þ	â	0.28	0.68	₽	0.7	8/H 1:5	22	25	1.0	в	0.55 90	1
<u>13a</u>	6	0.20	0.45	<u>7</u> a	0.50	Hexan	30	5	2.0	B	0.30 91	
2	5	0.19	0.42	Þ	0.50	B/H 1:10	25	5	2.0	в	0.29 91	
Ê	É	0.20	0.45	ç	0.50	Hexan	30	0	1.5	в	0.34 94	I.
₫	≦	0.14	0.31	₫	0.60	Benzol	3	8	1.5	Α	0.19 71	
Ē	ŝ	0.15	0.34	Ē	0.40	B/H 1:10	15	0	0.3	В	0.21 80	1
Ī	é	0.14	0.32	f	0.31	B/H 1:10	25	20	0.2	В	0.23 93	1
<u>9</u>	≦	Q.15	0.34	g	0.33	B/H 1:10	10	20	0.3	в	0.26 95	
þ	ş	0.21	0.48	Þ	0.40	Ben zo i	4	8	3.0	в	0.26 70	1
142	<u>13</u> a	0.10	0.14	-	-	Benzol	5	55	5.0	С	0.08 7	1
₽	<u>135</u>	0.17	0.22	-	-	Benzo]	10	80	8.0	с	0.13 76	
ş	<u>13</u> 2	0.13	0.16	-	-	Ben zo l	5	75	8.0	С	0.11 8	5
녍	<u>13d</u>	0.15	0.17	-	-	Benzol	9	80	10.0	C	0.13 80	
Ē	13 <u>e</u>	0.21	0.27	-	-	Aceton	8	25	8.0	С	0.19 9	I
f	<u>13f</u>	0.15	0.19	-	-	Aceton	10	40	15.0	C	0.13 8	,
2	139	0.23	0.27	•	-	Aceton	10	40	19.0	2	0.21 9	1
Þ	<u>13h</u>	0.15	0.16	-	-	Aceton	7	40	8:0	С	0.12 3	1

Tab. 3. Darstellung der Dreikernkomplexe

a) stets als 3.0 H Lösung in Benzol

b) 8/H = Benzol/Kexan im angegebenen Hengenverhältnis.

	Tricarbonylbis-u-(dimethylarsenido)	<u> </u>	Schmp.	Summenforme]			alvse	
omplēx	[] [tetracarbonyleisen]cobalt	Farbe	(°C)	(Molmasse)		С	н	Fe
ğ	dicarbonyl(cyclopentadienyl)eisen	rotbraun	122-124	C ₁₈ H ₁₇ As ₂ CoFe ₂ O ₉ (697.8)	Ber. Gef.	30.98 31.03	2.46	16.01 15.86
	tricarbonyl(cyclopentadienyl)chrom	dunkelbraun	101-102 (Zers)	C ₁₉ H ₁₇ As ₂ CoCrFeO ₁₀ (722.1)	Ber. Gef.	31.60 31.52	2.37 2.65	7.73 7.84
	tricarbonyl(cyclopentadienyl)- molybdän	schwarzbraun	96-97	C₁9H17As₂CoFeMoO10 (766.1)	Ber. Gef.	29.79 30.17	2.24 2.53	7.29 7.09
	tricarbonyl(cyclopentadienyl)- wolfram	rotbraun	105-107	C19H17A52CoFeW010 (850.9)	Ber. Gef.	26.82 26.98	2.01 2.22	6.56 6.96
	carbonyl(cyclopentadienyl)(tri- methylphosphan)eisen	dunkelrot	96-99	C20H26A52C0Fe208P (745.9)	Ber. Gef.	32.20 32.62	3.51 3.58	14.98 15.12
Ē	dicarbonyl(cyclopentadienyl)- (trimethylphosphan)chrom	dunkelrot	118-120 (Zers)	C₂1H₂6As₂CoCrFeO9P (770.0)	Ber. Gef.	32.76 32.97	3.40 3.47	7.25 7.37
đ	dicarbonyl (cyclopentadienyl)- (trimethylphosphan) molybdän	orangerot	122-123	C21H28A52C0FeM009P (814.0)	₿er. Gef.	30.99 31.38	3.22 3.30	6.86 6.66
	dicarbonyl(cyclopentadienyl)- (trimethylphosphan)wolfram	rot	124-128	C21H28As2CoFe09PW (901.9)	₿er. Gef.	27.97 28.18	2.91 3.07	6.19 6.02

Tab. 4. Charakterisierung der Komplexe 8

Tab. 5. Charakterisierung der Komplexe 9 und 10

nplex	Name	Farbe	Schmp. (°C)	Summenformel (Molmasse)	Analyse C H		Fe	
	Tricarbonyl-u-(dimethylarsenido) [dicarbonyl(cyclopentadienyl)ei- sen]-u-(dimethylphosphido)[tetra- carbonyleisen]cobalt	rotbraun	103 (Zers)	C ₁₈ H ₁₇ AsCoFe ₂ O ₉ P (653.9)	Ber. Gef.	33.06 33.29	2.62 2.73	17.08 17.39
	Tricarbonyl-µ- (dimethylarsenido) [tricarbonyl (cyclopentadienyl) wolfram]-µ- (dimethylphosphido) [tetracarbonyleisen]cobalt	braunrot	97-98 (Zers)	C ₁₉ H ₁₇ AsCoFe0 ₁₀ PW (809.9)	Ber. Gef.	28.18 28.37	2.12 2.11	6.70 6.79
	Tricarbonylbis-µ-(dimethylarsenido) [tricarbonyl(cyclopentadienyl) molybdän][tricarbonyl(trimethyl- phosphan]eisen]cobalt	schwarzbraun	91-94	C ₂₁ H ₂₈ As ₂ CoFeMoO ₉ P (814.0)	Ber. Gef.	30.99 30.49	3.22 3.05	6.86 7.04
	Tricarbonylbis-u-(dimethylarsenido) [dicarbonyl(cyclopentadienyl)(tri- methylphosphan)molybdän][tricarbonyl (trimethylphosphan)eisen]cobalt	dunkelbraun	124-127	C ₂₃ H ₃₅ As ₂ CoFeMoO ₈ P ₂ (862.0)	Ber. Gef.	32.05 31.79	4.09 4.13	6.48 6.77

Tab. 6. Charakterisierung der Komplexe 11

omplex	Tricarbonylbis-µ-(dimethylarsenido) [dicarbonyl(cyclopentadienyl)mangan] []cobalt	Farbe	Schmp. (°C)	Summenformel (Molmasse)		Analyse C H Co			
<u>1a</u>	dicarbonyl(cyclopentadienyl)eisen	schwarzgrün	116-118	C ₂₁ H ₂₂ As ₂ CoFeMnO ₇ (706.0)	Ber. Gef.	35.73 35.51	3.14 3.05	8.35 7.99	
₽	tricarbonyl(cyclopentadienyl)chrom	schwarz	143	C ₂₂ H ₂₂ As ₂ CoCrMnO ₈ (730.1)	Ber. Gef.	36.19 35.98	3.04 3.01	8.07 8.00	
Ē	tricarbonyl(cyclopentadienyl) molybdän	schwarz	152-155 (Zers)	С ₂₂ Н ₂₂ Аs ₂ СоМпМоО _в (774.1)	Ber. Gef.	34.14 33.88	2.86 2.88	7.61 7.26	
ሷ	tricarbonyl(cyclopentadienył) wolfram	schwarzblau	162-164 (Zers)	C ₂₂ H ₂₂ As ₂ CoMnO ₈ W (862.0)	Ber. Gef.	30.66 30.50	2.57 2.58	6.84 6.49	
Ē	carbonyl(cyclopentadienyl)(tri- methylphosphan)eisen	schwarz- violett	90-93	C ₂₃ H ₃₁ As ₂ CoFeMnO ₆ P (754.0)	Ber. Gef.	36.64 37.08	4.14 3.98	7.82 8.13	
	dicarbonyl(cyclopentadienyl)(tri- methylphosphan)chrom	dunkel~ violett	152-154	C24H31As2CoCrMn07P (778.2)	Ber. Gef.	37.04 37.29	4.02 4.17	7.57 7.39	
Ę	dicarbonyl(cyclopentadienyl)(tri~ methylphosphan)molybdän	rotviolett	168-171 (Zers)	C24H31A52CoMnM007P (822.1)	Ber. Gef.	35.06 35.10	3.80 3.68	7.17 7.00	
Þ	dicarbonył(cyclopentadienyl)(tri- methylphosphan)wolfram	brombeer	185-187	C24H31AS2CoMn07PW (910.0)	Ber. Gef.	31.66 31.97	3.43 3.51	6.48 6.78	

Dicarbonylbis-µ-(dimethylarsenido)		Schmp	Summenformel			Analyse			
[][tetracarbonyleisen]nitro- syleisen	Farbe	(°C)	(Molmasse)		C	Н	N	Fe	
dicarbonyl(cyclopentadienyl)eisen	hellrot	130-132	C17H17A52Fe3N09 (696.7)	Ber. Gef.	29.30 29.56	2.46 2.46	2.01	24.ſ 23.	
tricarbonyl(cyclopentadienyl)chrom	rot	97	C ₁₈ H ₁₇ As2CrFe2NO ₁₀ (720.9)	Ber. Gef.	29.99 30.17	2.38 2.53	2	17	
tricarbonyl(cyclopentadienyl) molybdän	rot	107-109 (Zers)	C ₁₈ H ₁₇ As2Fe2M0NO ₁₀ (764.8)	Ber. Gef.	28.27 28.34	2.24 2.19	1.83 1.85		
tricarbonyl(cyclopentadienyl) wolfram	dunkel- rot	118-119	C ₁₈ H ₁₇ As2Fe2NO ₁₀ W (852.7)	Ber. Gef.	25.35 25.47	2.01 1.97	1.64 1.75		
carbonyl(cyclopentadienyl)(tri- methylphosphan)eisen	rot- violett	97-99	C19H26A52Fe3NOBP (744.8)	Ber. Gef.	30.64 30.37	3.52 3.43	1.88 1.95	22.50 22.17	
dicarbonyl(cyclopentadienyl)(tri- methylphosphan)chrom	dunkel- rot	143-144 (Zers)	C20H26A52CrFe2NO6P (768.9)	Ber. Gef.	31.24 31.39	3.41 3.39	1.83 1.81	14.5 14.2t	
dicarbonyl (cyclopentadienyl) (trimethylphosphan)molybdän	dunkel rot	127-129	C ₂₀ H ₂₆ As ₂ Fe ₂ MoNO ₉ P (812.9)	Ber. Gef.	29.55 29.59	3.22 3.30	1.72 1.74	13.7 ⁴ 13.	
dicarbonyl(cyclopentadienyl) (trimethylphosphan)wolfram	orange- rot	133-135 (Zers)	C ₂₀ H ₂₈ As ₂ Fe ₂ NO ₉ PW (900.8)	Ber. Gef.	Z6.67 26.90	2.91 2.91	1.55 1.59	12.4 12.03	
	Dicarbonylbis-u-(dimethylarsenido) [][tetracarbonyleisen]nitro- syleisen dicarbonyl(cyclopentadienyl)eisen tricarbonyl(cyclopentadienyl)chrom tricarbonyl(cyclopentadienyl) molybdän tricarbonyl(cyclopentadienyl) wolfram carbonyl(cyclopentadienyl)(tri- methylphosphan)eisen dicarbonyl(cyclopentadienyl)(tri- methylphosphan)chrom dicarbonyl(cyclopentadienyl) (trimethylphosphan)molybdän dicarbonyl(cyclopentadienyl) (trimethylphosphan)wolfram	Dicarbonylbis-u-(dimethylarsenido) [][tetracarbonyleisen]nitro- syleisen dicarbonyl(cyclopentadienyl)eisen hellrot tricarbonyl(cyclopentadienyl)chrom rot tricarbonyl(cyclopentadienyl) rot molybdän tricarbonyl(cyclopentadienyl) dunkel- rot carbonyl(cyclopentadienyl)(tri- methylphosphan)eisen violett dicarbonyl(cyclopentadienyl)(tri- methylphosphan)chrom rot dicarbonyl(cyclopentadienyl) dunkel- rot dicarbonyl(cyclopentadienyl)(tri- methylphosphan)chrom rot dicarbonyl(cyclopentadienyl) dunkel- rot dicarbonyl(cyclopentadienyl) dunkel- (trimethylphosphan)molybdän rot dicarbonyl(cyclopentadienyl) orange- (trimethylphosphan)wolfram rot	Dicarbonylbis-u-(dimethylarsenido) [][tetracarbonyleisen]nitro- syleisen dicarbonyl(cyclopentadienyl)eisen hellrot 130-132 tricarbonyl(cyclopentadienyl)chrom rot 97 tricarbonyl(cyclopentadienyl) rot 107-109 molybdän (Zers) tricarbonyl(cyclopentadienyl) dunkel- tricarbonyl(cyclopentadienyl) violett dicarbonyl(cyclopentadienyl) dunkel- dicarbonyl(cyclopentadienyl) (tri- methylphosphan)eisen violett dicarbonyl(cyclopentadienyl) (tri- dicarbonyl(cyclopentadienyl) dunkel- dicarbonyl(cyclopentadienyl) (tri- dicarbonyl(cyclopentadienyl) dunkel- dicarbonyl(cyclopentadienyl) dunkel 127-129 (trimethylphosphan)molybdän rot dicarbonyl(cyclopentadienyl) orange- dicarbonyl(cyclopentadienyl) orange- d	Dicarbonylbis-u-(dimethylarsenido) [] [tetracarbonyleisen]nitro- syleisen dicarbonyl(cyclopentadienyl)eisen hellrot 130-132 C17H17As_FeaNO ₂ (696.7) tricarbonyl(cyclopentadienyl)chrom rot 97 C18H17As_FeaNO ₂ (696.7) tricarbonyl(cyclopentadienyl) rot 107-109 C18H17As_FeaNO ₁₀ (720.9) tricarbonyl(cyclopentadienyl) rot 107-109 C18H17As_FeaNO ₁₀ (744.8) tricarbonyl(cyclopentadienyl) dunkel- tricarbonyl(cyclopentadienyl) dunkel- tricarbonyl(cyclopentadienyl) tri- methylphosphan)eisen violett (22rs) (744.8) dicarbonyl(cyclopentadienyl)(tri- methylphosphan)eisen violett (22rs) (768.9) dicarbonyl(cyclopentadienyl) dunkel- dicarbonyl(cyclopentadienyl) dunkel- dicarbonyl(cyclopentadienyl) tri- methylphosphan)eisen violett (22rs) (768.9) dicarbonyl(cyclopentadienyl) dunkel 127-129 C20H26As_FeaNO ₂ P (trimethylphosphan)molybdän rot (21-129) dicarbonyl(cyclopentadienyl) orange- 133-135 C20H26As_FeaNO ₂ PW (trimethylphosphan)wolfram rot (22rs) (900.8)	Dicarbonylbis-u-(dimethylarsenido) [][tetracarbonyleisen]nitro- syleisen Schmp. (°C) Summenformel (Holmasse) dicarbonyl(cyclopentadienyl)eisen hellrot 130-132 C ₁₇ H ₁₇ As ₂ Fe ₃ NO ₉ (696.7) Ber. Gef. tricarbonyl(cyclopentadienyl)eisen hellrot 130-132 C ₁₇ H ₁₇ As ₂ Fe ₃ NO ₉ (696.7) Ber. Gef. tricarbonyl(cyclopentadienyl)chrom rot 97 C ₁₈ H ₁₇ As ₂ Fe ₂ MON ₁₀ (Zers) Ber. (764.8) Ber. Gef. tricarbonyl(cyclopentadienyl) rot 107-109 C ₁₈ H ₁₇ As ₂ Fe ₂ MON ₁₀ (Zers) Ber. (764.8) Gef. tricarbonyl(cyclopentadienyl) dunkel- 118-119 C ₁₈ H ₁₇ As ₂ Fe ₂ MON ₁₀ (Ber. (744.8) Ber. Gef. carbonyl(cyclopentadienyl)(tri- methylphosphan)eisen rot- 97-99 C ₁₈ H ₂₆ As ₂ Fe ₃ NO ₈ P Ber. Gef. dicarbonyl(cyclopentadienyl)(tri- methylphosphan)eisen rot- (Zers) (756.9) Gef. dicarbonyl(cyclopentadienyl) dunkel 127-129 C ₂₀ H ₂₆ As ₂ Se ₂ MON ₉ P Ber. Gef. dicarbonyl(cyclopentadienyl) orange- 133-135 C ₂₀ H ₂₆ As ₂ Fe ₂ MON ₉ P Ber. Gef. dicarbonyl(cyclopentadienyl)	$\begin{array}{c} \label{eq:border} Dicarbonylbis-u-(dimethylarsenido)\\ []][tetracarbonyleisen]nitro-\\ syleisen \\ \end{array} \\ \begin{array}{c} \mbox{Summenformel} \\ (Molmasse) \\ \mbox{C} \\ \mbox{C} \\ \mbox{C} \\ \mbox{Summenformel} \\ (Molmasse) \\ \mbox{C} \\ \mbox{C} \\ \mbox{Summenformel} \\ (Molmasse) \\ \mbox{C} \\ \mbox{C} \\ \mbox{Summenformel} \\ (Molmasse) \\ \mbox{C} \\ \mbox{Summenformel} \\ \mbox{(Molmasse) } \\ \mbox{C} \\ \mbox{Summenformel} \\ \mbox{(Molmasse) } \\ \mbox{C} \\ \mbox{Summenformel} \\ \mbox{(Molmasse) } \\ \mbox{Summenformel} \\ \mbox{(Molmasse) } \\ \mbox{Summenformel} \\ \mbox{(Molmasse) } \\ \mbox{Summenformel} \\ \mbox{(Holmasse) } \\ \mbox{Summenformel } \\ \mbox{Summenformel } \\ \mbox{(Holmasse) } \\ \mbox{Summenformel } \\ (Holmasse$	Dicarbonylbis-u-(dimethylarsenido) [][tetracarbonyleisen]nitro- syleisen Schmp. (°C) Summenformel (Molmasse) Anal dicarbonyl(cyclopentadienyl)elsen hellrot 130-132 C ₁₇ H ₁₇ As ₂ Fe ₃ NO ₆ (696.7) Ber. 29.30 2.46 dicarbonyl(cyclopentadienyl)elsen hellrot 130-132 C ₁₉ H ₁₇ As ₂ Fe ₃ NO ₆ (696.7) Ber. 29.30 2.46 tricarbonyl(cyclopentadienyl)chrom rot 97 C ₁₉ H ₁₇ As ₂ Fe ₃ NO ₁₀ (720.9) Ber. 29.99 2.38 tricarbonyl(cyclopentadienyl) rot 107-109 C ₁₉ H ₁₇ As ₂ Fe ₃ NO ₁₀ (2ers) Ber. 25.35 2.01 tricarbonyl(cyclopentadienyl) rot 107-109 C ₁₉ H ₁₇ As ₂ Fe ₃ NO ₁₀ (2ers) Ber. 25.35 2.01 tricarbonyl(cyclopentadienyl) rot 107-109 C ₁₉ H ₁₇ As ₂ Fe ₃ NO ₁₀ Ber. 25.55 2.01 tricarbonyl(cyclopentadienyl) dunkel- 118-119 C ₁₉ H ₁₇ As ₂ Fe ₃ NO ₁₀ Ber. 30.64 3.52 methylphosphan)eisen violett (744.8) Ber. 31.24 3.41 dicarbonyl(cyclopentadienyl) dunkel- 143-144 C ₂₀ H ₂₀ As ₂ Fe ₂ NO ₀ P Ber. 29.55 <td< td=""><td>Dicarbonylbis-µ-(dimethylarsenido) [] [] [tetracarbonyleisen]nitro- syleisen Farbe Schmp. (°C) Summenformel (Molmasse) Analyse dicarbonyl(cyclopentadienyl)eisen hellrot 130-132 C17H17As_FEaNOp (696.7) Ber. 29.30 2.46 2.01 dicarbonyl(cyclopentadienyl)eisen hellrot 130-132 C17H17As_FEaNOp (696.7) Ber. 29.30 2.46 2.08 tricarbonyl(cyclopentadienyl)chrom rot 97 C1mH17As_FEaNO10 (720.9) Ber. 29.39 2.38 - tricarbonyl(cyclopentadienyl) rot 107-109 C1mH17As_FEaNO10 (744.8) Ber. 229.39 2.34 - molybdän rot 107-109 C1mH17As_FEaNO10 (764.8) Ber. 22.35 - 1.85 tricarbonyl(cyclopentadienyl) dunkel- rot 118-119 C1mH17As_FEaNO10W Ber. 25.47 1.97 1.75 carbonyl(cyclopentadienyl)(tri- rot 97-99 C1mH2As_FEaNOaP Ber. 30.64 3.52 1.88 dicarbonyl(cyclopentadienyl)(tri- rot rot 22nH2aAs_FeaNOaP Ber. 31.24 3.41 1.83 dicarbonyl(cyclopentadienyl) dun</td></td<>	Dicarbonylbis-µ-(dimethylarsenido) [] [] [tetracarbonyleisen]nitro- syleisen Farbe Schmp. (°C) Summenformel (Molmasse) Analyse dicarbonyl(cyclopentadienyl)eisen hellrot 130-132 C17H17As_FEaNOp (696.7) Ber. 29.30 2.46 2.01 dicarbonyl(cyclopentadienyl)eisen hellrot 130-132 C17H17As_FEaNOp (696.7) Ber. 29.30 2.46 2.08 tricarbonyl(cyclopentadienyl)chrom rot 97 C1mH17As_FEaNO10 (720.9) Ber. 29.39 2.38 - tricarbonyl(cyclopentadienyl) rot 107-109 C1mH17As_FEaNO10 (744.8) Ber. 229.39 2.34 - molybdän rot 107-109 C1mH17As_FEaNO10 (764.8) Ber. 22.35 - 1.85 tricarbonyl(cyclopentadienyl) dunkel- rot 118-119 C1mH17As_FEaNO10W Ber. 25.47 1.97 1.75 carbonyl(cyclopentadienyl)(tri- rot 97-99 C1mH2As_FEaNOaP Ber. 30.64 3.52 1.88 dicarbonyl(cyclopentadienyl)(tri- rot rot 22nH2aAs_FeaNOaP Ber. 31.24 3.41 1.83 dicarbonyl(cyclopentadienyl) dun	

Tab. 7. Charakterisierung der Komplexe 12

Tab. 8. Charakterisierung der Komplexe 13 und 14

Tetracarbonylbis-µ-(dimethylarsenido) [][tetracarbonyleisen]mangan	Komplex	Farbe	Schmp. (°C)	Summenformel (Molmasse)		An C	alyse H	Fe
dicarbonyl (cyclopentadienyl)eisen	<u>13a</u> (cis)	ockergelb	151-152 (Zers)	C ₁₉ H ₁₇ As ₂ Fe ₂ MnO ₁₀ (721.8)	Ber. Gef.	31.62 31.91	2.37	15.47
	<u>14a</u> (trans)	gelbbraun	154-156 (Zers)		Ber. Gef.	31.62 31.69	2.37 2.33	15.47 15.65
tricarbonyl(cyclopentadienyl)chrom	13b(cis)	hellgelb	118-121 (Zers)	C ₂₀ H ₁₇ As ₂ CrFeMnO ₁₁ (748.0)	Ber. Gef.	32.20 32.38	2.30 2.10	7.49 7.7
	<u>14b</u> (trans)	gelbbraun	155-157 (Zers)		Ber. Gef.	32.20 32.18	2.30 2.05	7. 7.
tricarbonyl(cyclopentadienyl) molybdän	<u>13c</u> (cis)	gelborange	123-126 (Zers)	C ₂₀ H ₁₇ As ₂ FeMnMoO ₁₁ (789.9)	Ber. Gef.	30.41 30.57	Z.17 2.09	7. 6.≀
	<u>14c</u> (trans)	gelborange	160-163 (Zers)		Ber. Gef.	30.41 30.61	2.17 2.04	7.(6.5
tricarbonyl(cyclopentadienyl) wolfram	<u>13d</u> (cis)	gelborange	175 (Zers)	C ₂₀ H ₁₇ As₂FeMnO ₁₁ W (877.8)	Ber. Gef.	27.37 27.74	1.95 1.91	
	14d(trans)	orangegelb	168-171 (Zers)		Ber. Gef.	27.37 27.46	1.95 1.82	
carbonyl(cyclopentadienyl)(tri- methylphosphan)eisen	<u>13</u> e(cis)	karminrot	137-140	C ₂₁ H ₂₈ As ₂ Fe ₂ MnO ₉ P (769.9)	Ber. Gef.	32.76 32.73	3.40 3.49	1 14
	14e(trans)	rotbraun	139-142		Ber. Gef.	32.76 32.72	3.40 3.34	14. 14.6
dicarbonyl(cyclopentadienyl) (trimethylphosphan)chrom	<u>13f</u> (cis)	orangerot	161-163 (Zers)	C ₂₂ H ₂₆ As ₂ CrFeMnO ₁₀ P (794.0)	Ber. Gef.	33.28 33.35	3.30 3.19	7.03 6.86
	<u>14f</u> (trans)	gelbbraun	175-177 (Zers)		Ber. Gef.	33.28 33.41	3.30 3.24	7.03 7.15
dicarbonyl(cyclopentadienyl) (trimethylphosphan)molybdän	<u>13g</u> (cis)	hellgelb	180-183 (Zers)	C ₂₂ H ₂₈ As ₂ FeMnMoO ₁₀ P (838.0)	Ber. Gef.	31.53 31.81	3.13 3.09	6.66 7.03
	<u>14g</u> (trans)	gelb	186-189 (Zers)		Ber. Gef.	31.53 31.95	3.13 3.13	6.66 6.50
dicarbonyl(cyclopentadienyl) (trimethylphosphan)wolfram	<u>13h</u> (cis)	gelb	119-122	C ₂₂ H ₂₅ As ₂ FeMnO ₁₀ PW (925.9)	Ber. Gef.	28.54 28.48	2.83 2.92	6.0 5.6
	<u>14h</u> (trans)	gelb	190-193 (Zers)		Ber. Gef.	28.54 28.80	2.83 2.78	6.03 5.88

Literatur

- ¹⁾ H. Vahrenkamp, Angew. Chem. **90**, 403 (1978); Angew. Chem., Int. Ed. Engl. **17**, 379 (1978).
- ²⁾ T. A. Manuel, Adv. Organomet. Chem. 3, 181 (1965).
- ³⁾ H. J. Langenbach und H. Vahrenkamp, Chem. Ber. 110, 1195, 1206 (1977).
- 4) U. Richter und H. Vahrenkamp, J. Chem. Res. 1977, S 156, M 1775.
- ⁵⁾ H. J. Langenbach und H. Vahrenkamp, Chem. Ber. 112, 3390 (1979).
- ⁶⁾ H. J. Langenbach und H. Vahrenkamp, Chem. Ber. 112, 3773 (1979).
- ⁷⁾ H. J. Langenbach, E. Röttinger und H. Vahrenkamp, Chem. Ber. 113, 42 (1980).
- ⁸⁾ W. Malisch und M. Kuhn, Angew. Chem. 86, 51 (1974); Angew. Chem., Int. Ed. Engl. 13, 84 (1974).
- ⁹⁾ W. Malisch, H. Rössner, K. Keller und R. Janta, J. Organomet. Chem. 133, C 21 (1977); W. Malisch, Privatmitteilung.
- ¹⁰⁾ R. Müller und H. Vahrenkamp, J. Organomet. Chem. 150, C 11 (1978).
- ¹¹⁾ R. Müller und H. Vahrenkamp, J. Organomet. Chem. 170, C 25 (1979).
- 12) H. J. Langenbach und H. Vahrenkamp, Chem. Ber. 113, 2200 (1980), nachstehend.
- ¹³⁾ R. Müller und H. Vahrenkamp, Chem. Ber., in Vorbereitung.
- 14) E. Keller und H. Vahrenkamp, Chem. Ber. 110, 430 (1977).
- 15) R. A. Jackson und A. J. Poë, Privatmitteilung.
- ¹⁶⁾ E. Keller und H. Vahrenkamp, Chem. Ber. 111, 65 (1978).
- ¹⁷⁾ H. J. Langenbach, E. Keller und H. Vahrenkamp, J. Organomet. Chem., im Druck.
- 18) M. Casey und A. R. Manning, J. Chem. Soc. A 1971, 256.
- ¹⁹⁾ T. A. George und C. T. Turnipseed, Inorg. Chem. 12, 394 (1973).
- ²⁰⁾ J. W. Faller und A. S. Anderson, J. Am. Chem. Soc. 92, 5852 (1970).

[348/79]
